An exact corrected log-likelihood function for Cox’s proportional hazards model under measurement error and some extensions

نویسنده

  • T. Augustin
چکیده

This paper studies Cox‘s proportional hazards model under covariate measurement error. Nakamura‘s (1990) methodology of corrected log-likelihood will be applied to the so called Breslow likelihood, which is, in the absence of measurement error, equivalent to partial likelihood. For a general error model with possibly heteroscedastic and non-normal additive measurement error, corrected estimators of the regression parameter as well as of the baseline hazard rate are obtained. The estimators proposed by Nakamura (1992), Kong, Huang and Li (1998) and Kong and Gu (1999) are reestablished in the special cases considered there. This sheds new light on these estimators and justifies them as exact corrected score estimators. Finally, the method will be extended to some variants of the Cox model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augustin, Schwarz: Cox’s Proportional Hazards Model under Covariate Measurement Error - A Review and Comparison of Methods

This contribution studies the Cox model under covariate measurement error Methods proposed in the literature to adjust for measurement error are reviewed The basic structural and functional approaches are discussed in some detail important modi cations and further develop ments are brie y sketched Then the basic methods are compared in a simulation study

متن کامل

Full Likelihood Inferences in the Cox Model: an Empirical Likelihood Approach

For the regression parameter β0 in the Cox model, there have been several estimators constructed based on various types of approximated likelihood, but none of them has demonstrated small-sample advantage over Cox’s partial likelihood estimator. In this article, we derive the full likelihood function for (β0, F0), where F0 is the baseline distribution in the Cox model. Using the empirical likel...

متن کامل

The Dantzig Selector in Cox’s Proportional Hazards Model

The Dantzig Selector is a recent approach to estimation in high-dimensional linear regression models with a large number of explanatory variables and a relatively small number of observations. As in the least absolute shrinkage and selection operator (LASSO), this approach sets certain regression coefficients exactly to zero, thus performing variable selection. However, such a framework, contra...

متن کامل

Adaptive-LASSO for Cox’s Proportional Hazards Model

We investigate the variable selection problem for Cox’s proportional hazards model, and propose a unified model selection and estimation procedure with desired theoretical properties and computational convenience. The new method is based on a penalized log partial likelihood with the adaptively-weighted L1 penalty on regression coefficients, and is named adaptive-LASSO (ALASSO) estimator. Inste...

متن کامل

Corrected likelihood for proportional hazards measurement error model and its application.

Consider the case where the exact values of covariates in the proportional hazards model may not be observed but instead, only surrogates for them involving measurement errors are available. The maximum likelihood estimate based on the partial likelihood with the true covariate replaced by the observed surrogate is even asymptotically biased and may cause seriously misleading results in covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007